Week 3 Quiz: Differential Calculus: The Derivative and Rules of Differentiation

SGPE Summer School 2014

July 1, 2014

Limits

Question 1: Find $\lim _{x \rightarrow 3} f(x)$:

$$
f(x)=\frac{x^{2}-9}{x-3}
$$

(A) $+\infty$
(B) -6
(C) 6
(D) Does not exist!
(E) None of the above

Answer: (C) Note the the function $f(x)=\frac{x^{2}-9}{x-3}=\frac{(x-3)(x+3)}{x-3}=x+3$ is actually a line. However it is important to note the this function is undefined at $x=3$. Why? $x=3$ requires dividing by zero (which is inadmissible). As x approaches 3 from below and from above, the value of the function $f(x)$ approaches $f(3)=6$. Thus the limit $\lim _{x \rightarrow 3} f(x)=6$.

Question 2: Find $\lim _{x \rightarrow 2} f(x)$:

$$
f(x)=1776
$$

(A) $+\infty$
(B) 1770
(C) $-\infty$
(D) Does not exist!
(E) None of the above

Answer: (E) The limit of any constant function at any point, say $f(x)=C$, where C is an arbitrary constant, is simply C. Thus the correct answer is $\lim _{x \rightarrow 2} f(x)=1776$.

Question 3: Find $\lim _{x \rightarrow 4} f(x)$:

$$
f(x)=a x^{2}+b x+c
$$

(A) $+\infty$
(B) $16 \mathrm{a}+4 \mathrm{~b}+\mathrm{c}$
(C) $-\infty$
(D) Does not exist!
(E) None of the above

Answer: (B) Applying the rules of limits:

$$
\begin{aligned}
\lim _{x \rightarrow 4} a x^{2}+b x+c & =\lim _{x \rightarrow 4} a x^{2}+\lim _{x \rightarrow 4} b x+\lim _{x \rightarrow 4} c \\
& =a\left[\lim _{x \rightarrow 4} x\right]^{2}+b \lim _{x \rightarrow 4} x+c \\
& =16 a+4 b+c
\end{aligned}
$$

Answer: Applying the rules of limits:
Question 4: Find $\lim _{x \rightarrow 8} f(x)$:

$$
f(x)=\frac{x^{2}+7 x-120}{x-7}
$$

Answer: Applying the rules of limits:

$$
\begin{aligned}
\lim _{x \rightarrow 8} \frac{x^{2}+7 x-120}{x-7} & =\frac{8^{2}+7 * 8-120}{8-7} \\
& =\frac{120-120}{1} \\
& =0
\end{aligned} \quad=\frac{0}{1}
$$

Question 5: Find $\lim _{x \rightarrow 2} f(x)$:

$$
f(x)=\frac{3 x^{2}-4 x+6}{x^{2}+8 x-15}
$$

Answer: Applying the rules of limits:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{3 x^{2}-4 x+6}{x^{2}+8 x-15} & =\frac{3(2)^{2}-4(2)+6}{(2)^{2}+8(2)-15} \\
& =\frac{12-8+6}{4+1} \\
& =2
\end{aligned} \quad=\frac{10}{5}
$$

Question 6: Find $\lim _{x \rightarrow \infty} f(x)$:

$$
f(x)=\frac{9}{4 x^{2}-7}
$$

Answer: Applying the rules of limits:

$$
\begin{array}{rlr}
\lim _{x \rightarrow \infty} \frac{9}{4 x^{2}-7} & =\frac{9}{4(\infty)^{2}-7} \\
& =\frac{9}{4 \infty-7} \\
& =0 & =\frac{9}{\infty-7}=\frac{9}{\infty}
\end{array}
$$

Continuity and Differentiability

Question 7: Which of the following functions are NOT everywhere continuous:
(A) $f(x)=\frac{x^{2}-4}{x+2}$
(B) $f(x)=(x+3)^{4}$
(C) $f(x)=1066$
(D) $f(x)=m x+b$
(E) None of the above

Answer: (A) Remember that, informally at least, a continuous function is one in which there are no breaks its curve. A continuous function can be drawn without lifting your pencil from the paper. More formally, a function $f(x)$ is continuous at the point $x=a$ if and only if:

1. $f(x)$ is defined at the point $x=a$,
2. the limit $\lim _{x \rightarrow a} f(x)$ exists,
3. $\lim _{x \rightarrow a} f(x)=f(a)$

The function $f(x)=\frac{x^{2}-4}{x+2}$ is not everywhere continuous because the function is not defined at the point $x=-2$. It is worth noting that $\lim _{x \rightarrow-2} f(x)$ does in fact exist! The existence of a limit at a point does not guarantee that the function is continuous at that point!

Question 8: Which of the following functions are continuous:
(A) $f(x)=|x|$
(B) $f(x)= \begin{cases}3 & x<4 \\ \frac{1}{2} x+3 & x \geq 4\end{cases}$
(C) $f(x)=\frac{1}{x}$
(D) $f(x)= \begin{cases}\ln x & x<0 \\ 0 & x=0\end{cases}$
(E) None of the above

Answer: (A) The absolute value function $f(x)=|x|$ is defined as:

$$
f(x)= \begin{cases}x & x \geq 0 \\ -x & x<0\end{cases}
$$

Does this function satisfy the requirements for continuity? Yes! The critical point to check is $x=0$. Note that the function is defined at $x=0$; the $\lim _{x \rightarrow 0} f(x)$ exists; and that $\lim _{x \rightarrow 0} f(x)=0=f(0)$.

Question 9: Which of the following functions are NOT differentiable:
(A) $f(x)=|x|$
(B) $f(x)=(x+3)^{4}$
(C) $f(x)=1066$
(D) $f(x)=m x+b$
(E) None of the above

Answer: (A) Remember that continuity is a necessary condition for differentiability (i.e., every differentiable function is continuous), but continuity is not a sufficient condition to ensure differentiability (i.e., not every continuous function is differentiable). Case in point is $f(x)=|x|$. This function is in fact continuous (see previous question). It is not however differentiable at the point $x=0$. Why? The point $x=0$ is a cusp (or kink). There are an infinite number of lines that could be tangent to the function $f(x)=|x|$ at the point $x=0$, and thus the derivative of $f(x)$ would have an infinite number of possible values.

Derivatives

Question 10: Find the derivative of the following function:

$$
f(x)=1963
$$

(A) $+\infty$
(B) 1963
(C) $-\infty$
(D) 0
(E) None of the above

Answer: (D) The derivative of a constant function is always zero.
Question 11: Find the derivative of the following function:

$$
f(x)=x^{2}+6 x+9
$$

(A) $f^{\prime}(x)=2 x+6+9$
(B) $f^{\prime}(x)=x^{2}+6$
(C) $f^{\prime}(x)=2 x+6$
(D) $f^{\prime}(x)=2 x$
(E) None of the above

Answer: (C) Remember that 1) the derivative of a sum of functions is simply the sum of the derivatives of each of the functions, and 2) the power rule for derivatives says that if $f(x)=k x^{n}$, then $f^{\prime}(x)=n k x^{n-1}$. Thus $f^{\prime}(x)=2 x^{2-1}+6 x^{1-1}+0=2 x+6$.

Question 12: Find the derivative of the following function:

$$
f(x)=x^{\frac{1}{2}}
$$

(A) $f^{\prime}(x)=-\frac{1}{2 \sqrt{x}}$
(B) $f^{\prime}(x)=\frac{1}{\sqrt{x}}$
(C) $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$
(D) $f^{\prime}(x)=\sqrt{x}$
(E) None of the above

Answer: (C) Remember that the power rule for derivatives works with fractional exponents as well! Thus $f^{\prime}(x)=\frac{1}{2} x^{\frac{1}{2}-1}=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}}$.
Question 13: Find the derivative of the following function:

$$
f(x)=5 x^{2}(x+47)
$$

(A) $f^{\prime}(x)=15 x^{2}+470 x$
(B) $f^{\prime}(x)=5 x^{2}+470 x$
(C) $f^{\prime}(x)=10 x$
(D) $f^{\prime}(x)=15 x^{2}-470 x$
(E) None of the above

Answer: (A) Ideally, you would solve this problem by applying the product rule. Set $g(x)=5 x^{2}$ and $h(x)=$ $(x+47)$, then $f(x)=g(x) h(x)$. Apply the product rule:

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(x) h(x)+g(x) h^{\prime}(x) \\
& =10 x(x+47)+5 x^{2}(1) \\
& =10 x^{2}+470 x+5 x^{2} \\
& =15 x^{2}+470 x
\end{aligned}
$$

Question 14: Find the derivative of the following function:

$$
f(x)=\frac{5 x^{2}}{x+47}
$$

(A) $f^{\prime}(x)=\frac{5 x^{2}-470 x}{(x+47)^{2}}$
(B) $f^{\prime}(x)=\frac{10 x^{2}+470 x}{(x+47)}$
(C) $f^{\prime}(x)=10 x$
(D) $f^{\prime}(x)=\frac{5 x^{2}+470}{(x+47)^{2}}$
(E) None of the above

Answer: (E) Ideally, you would solve this problem by applying the quotient rule. Set $g(x)=5 x^{2}$ and $h(x)=$ $(x+47)$, then $f(x)=\frac{g(x)}{h(x)}$. Apply the quotient rule:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{g^{\prime}(x) h(x)-g(x) h^{\prime}(x)}{h(x)^{2}} \\
& =\frac{10 x(x+47)-5 x^{2}(1)}{(x+47)^{2}} \\
& =\frac{10 x^{2}+470 x-5 x^{2}}{(x+47)^{2}} \\
& =\frac{5 x^{2}+470 x}{(x+47)^{2}}
\end{aligned}
$$

Question 15: Find the derivative of the following function:

$$
f(x)=5(x+47)^{2}
$$

(A) $f^{\prime}(x)=15 x^{2}+470 x$
(B) $f^{\prime}(x)=10 x-470$
(C) $f^{\prime}(x)=10 x+470$
(D) $f^{\prime}(x)=15 x^{2}-470 x$
(E) None of the above

Answer: (C) Ideally, you would solve this problem by applying the chain rule. Set $g(h)=5 h^{2}$ and $h(x)=(x+47)$, then $f(x)=g(h(x))$. Apply the chain rule:

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(h) h^{\prime}(x) \\
& =10 h \\
& =10(x+47) \\
& =10 x+470
\end{aligned}
$$

Question 16: Find the derivative of the following function:

$$
f(x)=(7 x-4)(3 x+8)^{4}
$$

Answer: Combine the product rule and the chain rule:

$$
\begin{aligned}
f^{\prime}(x) & =7(3 x+8)^{4}+(7 x-4)(4)(3)(3 x+8)^{3} \\
& =7(3 x+8)^{4}+12(7 x-4)(3 x+8)^{3} \\
& =7(3 x+8)^{4}+(84 x-48)(3 x+8)^{3}
\end{aligned}
$$

Question 17: Find the derivative of the following function:

$$
f(x)=\left(122 x^{3}-49\right)^{-4}
$$

Answer: Use the chain rule:

$$
\begin{aligned}
f^{\prime}(x) & =-4 *(122)(3) x^{2}\left(122 x^{3}-49\right)^{-5} \\
& =-\frac{1464 x^{2}}{\left(122 x^{3}-49\right)^{5}}
\end{aligned}
$$

Question 18: Find the derivative of the following function:

$$
f(x)=\frac{8 x^{2}+3 x-9}{7 x^{2}-4}
$$

Answer: The easiest way is to solve this is to get rid of the fraction, and then combine the product rule with the chain rule:

$$
\begin{aligned}
f(x) & =\left(8 x^{2}+3 x-9\right)\left(7 x^{2}-4\right)^{-1} \\
f^{\prime}(x) & =(8(2) x+3)\left(7 x^{2}-4\right)^{-1}+\left(8 x^{2}+3 x-9\right)(-1)\left(7 x^{2}-4\right)^{-2} \\
& =\frac{16 x+3}{7 x^{2}-4}-\frac{8 x^{2}+3 x-9}{\left(7 x^{2}-4\right)^{2}}
\end{aligned}
$$

Question 19: Find the derivative of the following function:

$$
f(x)=\left(22-9 x^{6}\right)^{\frac{1}{2}}
$$

Answer: Use the chain rule:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2}\left(22-9 x^{6}\right)^{-\frac{1}{2}}(9)(6) x^{5} \\
& =7(3 x+8)^{4}+12(7 x-4)(3 x+8)^{3} \\
& =\frac{27 x^{5}}{2\left(22-9 x^{6}\right)^{\frac{1}{2}}}
\end{aligned}
$$

Question 20: Find the derivative of the following function:

$$
f(x)=\left(18 x^{2}+23\right)^{\frac{1}{3}}
$$

Answer: Use the chain rule:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{3}(2)(18) x\left(18 x^{2}+23\right)^{-\frac{1}{3}} \\
& =\frac{12 x}{\left(18 x^{2}+23\right)^{\frac{1}{3}}}
\end{aligned}
$$

Question 21: Find the derivative of the following function:

$$
f(x)=5 x^{2}(4 x-9)^{3}
$$

Answer: Combine the product rule and the chain rule:

$$
\begin{aligned}
f^{\prime}(x) & =5(2) x(4 x-9)^{3}+5 x^{2}(3)(4)(4 x-9)^{2} \\
& =10 x(4 x-9)^{3}+60 x^{2}(4 x-9)^{2}
\end{aligned}
$$

Higher Order Derivatives

Question 22: Find the second derivative of the following function:

$$
f(x)=5 x^{2}(x+47)
$$

(A) $f^{\prime \prime}(x)=30 x-470$
(B) $f^{\prime \prime}(x)=30 x+470$
(C) $f^{\prime \prime}(x)=15 x^{2}+235$
(D) $f^{\prime \prime}(x)=15 x^{2}+470 x$
(E) None of the above

Answer: (B) The second derivative is just the derivative of the first derivative. Simplest solution would be to multiply to re-write the function as $f(x)=5 x^{2}(x+47)=5 x^{3}+235 x^{2}$. Now take the derivative: $f^{\prime}(x)=15 x^{2}+470 x$. Taking the derivative again yields the second derivative: $f^{\prime \prime}(x)=30 x+470$.
Question 23: Find the third derivative of the following function:

$$
f(x)=5 x^{2}(x+47)
$$

(A) 15
(B) $15+x$
(C) $30 x$
(D) $30 x+470$
(E) None of the above

Answer: (E) Just take the derivative of your answer to Question 12 to get the third derivative of $f(x)=$ $5 x^{2}(x+47)$. Answer: $f^{\prime \prime \prime}(x)=30$.

Question 24: Suppose that you have the following utility function:

$$
u(x)=\sqrt{x}
$$

Find $-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}$.
(A) $\frac{1}{2 x}$
(B) $-\frac{1}{2 x}$
(C) $2 x$
(D) $-2 x$
(E) None of the above

Answer: (A) The ratio $-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}$ is called the Arrow-Pratt measure of relative risk aversion and you will encounter it in core microeconomics. The first derivative of the utility function (otherwise known as marginal utility) is $u^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ (see Question 9 above). The second derivative is $u^{\prime \prime}(x)=-\frac{1}{4} x^{-\frac{3}{2}}=-\frac{1}{4 \sqrt{x^{3}}}$. Thus the Arrow-Pratt measure of relative risk aversion is:

$$
-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}=-\frac{-\frac{1}{4 \sqrt{x^{3}}}}{\frac{1}{2 \sqrt{x}}}=\frac{2 \sqrt{x}}{4 \sqrt{x^{3}}}=\frac{1}{2 x}
$$

Question 25: Find the first, second and third derivatives of the following function:

$$
f(x)=3 x^{4}-5 x^{3}+8 x^{2}-7 x-13
$$

Answer:

$$
\begin{aligned}
f^{\prime}(x) & =12 x^{3}-15 x^{2}+16 x-7 \\
f^{\prime \prime}(x) & =36 x^{2}-30 x+16 \\
f^{\prime \prime \prime}(x) & =72 x^{2}-30
\end{aligned}
$$

Question 26: Find the first, second and third derivatives of the following function:

$$
f(x)=(5-2 x)^{4}
$$

Answer:

$$
\begin{aligned}
f^{\prime}(x) & =4(-2)(5-2 x)^{3}=-8(5-2 x)^{3} \\
f^{\prime \prime}(x) & =-8(3)(-2)(5-2 x)^{2}=48(5-2 x)^{2} \\
f^{\prime \prime \prime}(x) & =48(2)(-2)(5-2 x)=-192(5-2 x)=384 x-960
\end{aligned}
$$

